
High Cooling System
Liquid Cooling Direct To Chip

L'EVOLUZIONE DEI SISTEMI DI RAFFREDDAMENTO NEI DATA CENTER

L'evoluzione dei data center, guidata da High-Performance Computing (HPC), Artificial Intelligence (AI) e carichi di lavoro cloud, ha portato ad aumenti senza precedenti nelle densità termiche dei rack, spesso superiori a 30-50 kW per rack.

I tradizionali sistemi di raffreddamento ad aria, sebbene affidabili in passato, ora faticano a dissipare in modo efficiente carichi termici così elevati, portando a un consumo energetico eccessivo, costi più elevati e limiti alla scalabilità del data center.

Secondo l'**ASHRAE Technical Committee (1)**, le tecnologie di raffreddamento a liquido stanno rapidamente guadagnando terreno come soluzioni efficaci per affrontare queste sfide, offrendo un'efficienza termica superiore e consentendo densità di rack più elevate nei moderni data center.

Il raffreddamento a liquido, in particolare il raffreddamento Direct-to-Chip bifase, è risultato come la soluzione ottimale per affrontare queste sfide. Questa tecnologia all'avanguardia mira a rimuovere il calore direttamente dalla fonte, ovvero dalla CPU o dalla GPU, con conseguente efficienza termica e affidabilità operativa senza pari.

A differenza dei tradizionali sistemi ad aria che si basano su ventole e dispositivi di raffreddamento, HCS (High Cooling System) utilizza il raffreddamento evaporativo bifase per dissipare e ottenere una gestione del calore superiore.

COS'È IL RAFFREDDAMENTO DIRECT-TO-CHIP BIFASE?

Direct-to-Chip Cooling bifase è una tecnologia avanzata di gestione termica in cui il fluido di raffreddamento viene erogato direttamente ai processori (CPU e GPU) tramite piastre fredde specifiche. Sulla superficie del processore, il fluido assorbe calore e subisce evaporazione, passando da liquido a vapore.

Questo processo di cambiamento di fase rimuove efficacemente il calore alla fonte, migliorando significativamente le prestazioni di raffreddamento e riducendo al contempo il consumo di energia rispetto ai metodi di raffreddamento tradizionali. Il vapore viene quindi trasportato a un condensatore, dove rilascia il calore assorbito, torna a essere liquido e ricircola, completando il ciclo di raffreddamento.

IL PROCESSO EVAPORATIVO BIFASE

Fase di Evaporazione

Il fluido di raffreddamento (refrigerante dielettrico) assorbe calore dal processore, passando da liquido a vapore. Questo cambiamento di fase rimuove efficacemente carichi di calore elevati direttamente dalla superficie del chip.

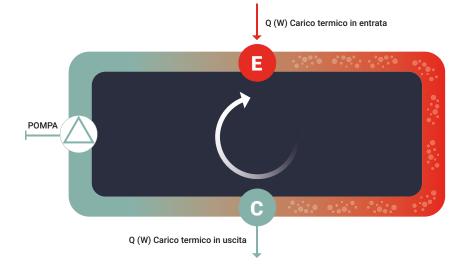
Fase di Condensazione

Il vapore viene trasportato all'unità del condensatore, dove rilascia il calore assorbito e torna allo stato liquido. Il liquido torna quindi in circolo alle piastre fredde, completando il ciclo.

QUESTO METODO OFFRE DIVERSI VANTAGGI

Migliore dissipazione del calore

La tecnologia direct-to-chip gestisce in modo efficiente densità termiche fino a 100W/cm², rendendola ideale per CPU e GPU avanzate.


Efficienza Energetica

Sfruttando il cambiamento di fase del refrigerante, il sistema ottiene prestazioni di raffreddamento superiori consumando meno energia.

Design Eco-Friendly

Il sistema utilizza refrigeranti di ultima generazione con basso potenziale di riscaldamento globale (GWP), garantendo la sostenibilità.

SCHEMA
DI FUNZIONAMENTO

PERCHÈ IL RAFFREDDAMENTO A LIQUIDO EVAPORATIVO BIFASE È IL FUTURO?

L'HCS di ITRack utilizza il raffreddamento a **liquido bifase direct-to-chip**, che combina le fasi di **evaporazione** e **condensazione** per gestire in modo efficiente il calore a livello di processore. Questa tecnologia non solo ottimizza le prestazioni di raffreddamento, ma stabilisce anche un nuovo punto di riferimento in termini di risparmio energetico e sostenibilità operativa per i moderni data center.

Efficienza

Il raffreddamento a liquido diminuisce la resistenza termica e elimina le inefficienze del ricircolo dell'aria, estraendo il calore direttamente dal chip.

Scalabilità

Supporta processori di nuova generazione con densità di potenza fino a **100W/cm²** e TDP (Thermal Design Power) fino a **1500W**, consentendo maggiore densità di elaborazione dei dati negli armadi rack già esistenti.

Impatto Ambientale

Il raffreddamento a liquido consente una maggiore sostenibilità del data center riducendo la dipendenza dai sistemi di raffreddamento ad aria ad alta intensità energetica e supportando l'uso di refrigeranti a basso GWP.

Affidabilità

Mantenendo un controllo termico preciso, prolunga la durata delle apparecchiature IT e garantisce la stabilità del sistema sottoposto a carichi di calcolo elevati.

COMPARAZIONE DEI SISTEMI DI RAFFREDDAMENTO A LIQUIDO

	Immersion Cooling	Direct-To-Chip Singola Fase	Direct-To-Chip 2 Fasi (HCS)
Volume serbatoio 42U	1483 L	11 L	9 L
Densità del fluido	Alto	Basso	Basso
Dimensionamento tubazioni	Alto diametro	Basso diamentro	Basso diametro
Dimensionamento motore pompa	Alto	Basso	Basso
Utilizzo rack tradizionale 42U – 52U	No	Si	Si
Carico su pavimento rialzato	Alto	Basso	Basso
Compatibilità con server standard	Basso	Alto	Alto
Sostituzione fluido	Si	Si per manutenzione	No - circuito chiuso
Rischi legati a perdite di fluido	No	Si – fluido conduttivo	No

HIGH COOLING SYSTEM

COMPONENTI

Il **sistema HCS** è una soluzione innovativa di raffreddamento a liquido evaporativo in-rack che si integra perfettamente nell'infrastruttura degli armadi rack per data center.

Progettato specificamente per allinearsi alle dimensioni e ai requisiti dei rack IT, questo sistema ottimizza le prestazioni di raffreddamento direttamente alla fonte di generazione del calore, offrendo un'efficienza di gestione termica senza precedenti.

REFRIGERANTE

 Refrigerante non tossico, non infiammabile, non conduttivo (dielettrico /ASHRAE A1)

HIGH COOLING SYSTEM

BENEFICI

PERFORMANCE

RISPARMIO

SOSTENIBILITÀ AMBIENTALE

High Cooling System | Raffreddamento sostenibile per un futuro più verde

Garantendo un'elevata efficienza energetica, riducendo significativamente il consumo di energia e raggiungendo un PUE target di 1,035, la soluzione HCS è essenziale per data center più sostenibili ed ecologici.

Il suo sistema a circuito chiuso non utilizza acqua, contribuendo alla conservazione delle risorse naturali, mentre il coolant dielettrico a basso GWP (GWP=2) assicura un impatto ambientale minimo e un funzionamento sicuro e sostenibile. Eliminando le inefficienze del raffreddamento ad aria, HCS consente ai data center di operare in modo più efficiente, riducendo le emissioni di ${\rm CO_2}$ e la loro impronta di carbonio.

Con l'evoluzione dei processori verso maggiore potenza e carichi termici più elevati, e con il consumo energetico dei componenti non IT che diventa una sfida critica per la realizzazione dei data center, HCS è la soluzione ideale. Affrontando queste nuove esigenze, HCS garantisce la scalabilità, l'efficienza e la sostenibilità necessarie per i data center del futuro.

SPECIFICHE TECNICHE

CDU		
Struttura completamente integrata, inclusi componenti elettrici e sistema di controllo. Tutti i materiali a contatto con il liquido sono compatibili con refrigeranti dielettrici.		
Tipologia di raccordi idraulici	Raccordi a innesto rapido	
Capacità di raffreddamento	Fino a 60 kW per rack (ASHRAE W45 a 45°C)	
	Fino a 100 kW per rack (ASHRAE W32 a 32°C)	
Affidabilità	Pompe ridondanti (N+1), alimentatori, sensori, scheda di controllo	
Sistema di tubazioni	Tubi in alluminio, PTFE o rame, giunti idraulici rapidi in alluminio	

Ambiente	
SISTEMA	
Temperatura di lavoro	5°C -45°C
Max pressione	3 bar (refrigerante), 5 bar (Acqua di raffreddamento)
Umidità	20% -70%
REFRIGERANTE	
Tipologia	Fluido dielettrico (proprietario)
Range di temperature di lavoro	2°C -65°C
Capacità serbatio (buffer)	7L
Sicurezza	Fluido non conduttivo, non corrosivo, non infiammabile, non tossico
Proprietà ambientali	GWP=2, ODP nullo

Connesioni elettriche e consumi		
Connessione	N+1 fasi, 120-230 VAC a 50/60 Hz	
Consumo	< 0.7 kW	

Dimensioni		
Altezza	6U	
Larghezza	19"	
Lunghezza	800mm	
Peso	45Kg	

Organize and Protect Your IT Infrastructure